Nu presenterar Chalmersforskare den första vätgassensorn i världen som uppnår de högt ställda framtida kraven för att få användas i vätgasbilar. De banbrytande resultaten publicerades nyligen i den ansedda vetenskapliga tidskriften Nature Materials.
Vätgas är en ren och förnybar energibärare som kan driva bilar som bara släpper ut vatten. Problemet är att vätgasen är mycket brandfarlig när den blandas med luft. Därför krävs supereffektiva detektorer.
Den efterlängtade upptäckten är en optisk nanosensor som är inkapslad i ett plastmaterial. Sensorn bygger på ett optiskt fenomen – plasmoner - som uppstår när nanopartiklar av metall blir belysta och fångar upp ljus av en viss våglängd. Sensorn ändrar helt enkelt färg när mängden vätgas i omgivningen förändras.
Plasten runt den lilla sensorn är inte bara ett skydd, utan en nyckelkomponent. Den ökar sensorns hastighet och underlättar för vätgasmolekyler att passera in i metallpartiklarna där den detekteras. Samtidigt fungerar plasten som en effektiv barriär mot omgivningen eftersom inga andra molekyler släpps igenom. Sensorn kan därför arbeta både supereffektivt och ostört. Den gör att den klarar fordonsindustrins högt ställda framtida krav för tillämpning i vätgasbilar: att kunna detektera 0,1 procent väte i luft på mindre än en sekund.
– Vi har inte bara tagit fram världens snabbaste vätgassensor, utan också en sensor som är stabil över tid och inte avaktiveras. Till skillnad från dagens vätgassensorer behöver den här inte kalibreras om lika ofta, eftersom den skyddas av plasten, säger Ferry Nugroho, forskare på institutionen på fysik på Chalmers.
Att detektera vätgas är utmanande på många sätt. Gasen är osynlig, luktfri, flyktig och extremt brandfarlig. Det krävs bara fyra procent väte i luften för det ska bildas knallgas som kan antändas vid minsta gnista. För att framtidens vätgasbilar och infrastrukturen kring dessa ska bli tillräckligt säker, måste man kunna detektera ytterst små mängder vätgas i luften. Sensorerna måste därför vara snabba så att läckor ska kunna åtgärdas innan det uppstår en brand.
Även om siktet främst är inställt på att använda vätgas som energibärare, finns det också andra möjligheter som öppnas. Högeffektiva vätgassensorer efterfrågas inom elnätsbranschen och kemi- och kärnkraftsindustrin, men kan också bidra till att förbättra medicinsk diagnostik.
– Mängden vätgas i vår utandningsluft kan ge svar om till exempel inflammationer och födoämnesintoleranser. Vi hoppas att våra resultat ska kunna användas på bred front. Det här är så mycket mer än en vetenskaplig publikation, säger Christoph Langhammer.
På sikt är förhoppningen att sensorn ska kunna serietillverkas på ett effektivt sätt, till exempel med hjälp av 3D-printerteknik.
Fakta:
• Sensorn bygger på ett optiskt fenomen – plasmoner – som uppstår när nanopartiklar av metall blir belysta och fångar upp ljus av en viss våglängd.
• Den optiska nanosensorn innehåller miljontals metallnanopartiklar av en palladium-guldlegering som ser till att vätgasen effektivt sugs upp som i en disktrasa. Denna effekt gör att sensorn ändrar färg när mängden vätgas i omgivningen förändras.
• Plasten runt sensorn är inte bara ett skydd, utan ökar också sensorns hastighet genom att underlätta för vätgasmolekyler att tränga in i metallpartiklarna där de detekteras. Samtidigt fungerar plasten som en effektiv barriär mot omgivningen eftersom inga andra molekyler, som annars skulle avaktivera sensorn, släpps igenom
• Sensorns effektivitet gör att den klarar fordonsindustrins högt ställda framtida krav för tillämpning i vätgasbilar: att kunna detektera 0,1 procent väte på mindre än en sekund.
• Forskningen har finansierats av Stiftelsen för Strategisk Forskning inom ramen för projektet Plastic Plasmonics.